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SUMMARY AND KEYWORDS

Introduction

Why Modelling? Biology is a quantitative natural science. Mathematics is the basis of all
quantitative natural sciences. What constitutes a good model? Large-scale models versus
minimal models.

Some notable quotes

e "With four parameters I can fit an elephant, and with five I can make him wiggle his
trunk.” (John von Neumann)

e "Everything should be made as simple as possible, but. no simpler.” (Albert Einstein)

e "All exact science is dominated by the idea of approximation.” (Betrand Russell)

Nonlinear Dynamics and Dynamical Systems

Important terms

phase-space, state-space (Zustandsraum), cellular automata, Boolean networks, discrete-time
systems, continuous time-systems, iterated maps, the logistic map zp4+1 = rz,(1—1,), fixpoints
and their stability.

Ordinary Differential Equations (ODEs)

e 1-dim ODEs: linear ODE & = a- z(t), exponential growth and decay, graphical solution
of the ODE & = f(z), fixpoints, stability, multi-stability, derivative (slope) at the fixpoint.

¢ 2-dim ODEs: Nullclines, Jacobian matrix, linear stability analysis, Taylor expansion,
Lotka-Volterra Equation, predator-prey systems, chaos.

e Further Reading: D. Kaplan and L. Glass. Understanding Nonlinear Dynamics. Springer
1995.

Modelling Cellular Metabolism

Important terms: Stoichiometry, rate equation, Michaelis-Menten equation, rapid-equilibrium
approximation, quasi-steady state approximation.
The general form of a metabolic system (homogeneous environment, well-stirred),

dz

— =N -v(z,k 1
=N w(z, k) 1)
with  denoting a vector of the concentrations of metabolites, N denoting the m x r stoichiomet-

ric matrix, p denotes a set of (usually nonlinear) rate equations and k a set of parameters. The
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Figure 1: Example of a metabolic network. (A) Reaction scheme. Note that visual repre-
sentations are often ambiguous. (B) The stoichiometric matrix. (C) A list of reactions. (D)
Mass-balance equations. The figure is taken from: R. Steuer and B. H. Junker (2009) Com-
putational Models of Metabolism: Stability and Regulation in Metabolic Networks. Advances
in Chemical Physics, Volume 142. Rice, Stuart A. (editor), ISBN-10: 0-470-46499-2 ISBN-13:
978-0-470-46499-1 - John Wiley & Sons (2009)

columns of N correspond to r reactions, the rows of N correspond to m metabolites. Typically,
T = m.

Moiety conservation

In biochemical reaction networks subgroups of chemical species are often conserved. That is,
transferred from one molecule to another but the total amount does not change (= moiety
conservation). A typical example is adenosine diphosphate (ADP) that is phosphorylated to
adenosine triphosphate (ATP) and dephosphorylated back to ADP'(the moiety may also include
AMP). See Figure 1.

Conserved moieties correspond to linearly dependent row in the matrix N. In this case
rank(N) < m and E - N = 0 where E denotes a matrix whose columns form a basis of the left
nullspace of N (E has m — rank(N) rows). The matrix N can be split into independent (N 0
and dependent rows (Np),

0
N = [g})} , (2)

such that N = L - NO where L denotes a Link-matrix.

Network Analysis

Simplest method of analysis, based on reaction databases. Interpretation of metabolism as
a ’graph’ (i.e., a substrate graph: two metabolites are 'connected’ if they are substrate and
product in a common reaction; reaction graph: two reactions are 'connected’ if a substrate of



- .

one is a product of the other; directed and undirected variants are possible; often co-factors
and highly connected metabolites are not considered). Analysis using graph-theoretic measures:
diameters, distribution of connectivity, shortest pathlengths, clustering, centrality. Note that
metabolism itself is a bipartite graph (two types of nodes, reactions and metabolites).

Constraint-based analysis

Before looking at details of the rate equation, we can look at the constraint imposed by the
steady state assumption,

0=N-0 . (3)

Here 19 is a vector of reaction rates. The vector is an element of the right nullspace (or kernel)

of the stoichiometric matrix. The vector 1/° is typically underdetermined (fewer constraints than
unknown fluxes, the number of unknown fluxes is r — rank(N)).

¢ Elementary Flux Modes (EFMs) Enumeration of possible pathways. A flux mode is
a set of reactions that can give rise to a steady state flux vector v°. An elementary flux
mode is a flux mode where no reaction can be removed (= zero flux) and the resulting
reactions can still be a flux mode. The set of EFMs is unique for a given stoichiometry.
The number of EFMs is typically (much) higher than the dimension of the nullspace.

¢ Flux-balance analysis (FBA): Unknown fluxes are estimated using optimality princi-
ples. That is, the flux vector ¥ is assumed to be such that a give objective function is
maximized (such as ATP production of biomass formation). The optimal solution is typ-
ically not unique. The most common objective is the biomass objective function (BOF),

i.e., growth.
max Vi ‘
v
st. N-10=0, ) (4)
(&7} < V? S /Bi7

Chemical Reaction Kinetics

mass-action, rate constants, reversibility, thermodynamics, chemical equilibrium, detailed bal-
ance.

Enzyme Kinetics

Enzymes are catalysts that accelerate reactions. A simple model for basic enzyme function was
established by Michaelis and Menten. The enzyme binds substrate to form an enzyme-substrate
complex. The complex undergoes a transformation and the product is released.

E+S<>ES— E+P (5)

An overall rate equation can be derived using either a quasi-steady state or a rapid-equilibrium
assumption. The resulting rate equation is

_ kcat[E][S] — VM[S]
Ky +1[S] Kum+[S]
where [E] denotes the total concentration of enzyme, [S] the concentration of substrate, kcat

the catalytic activity of the enzyme (turnover number), and K s denotes the half-saturation (or
Michaelis-Menten) constant. The maximal reaction rate is Vi = kcat[E].

(6)



Lineweaver-Burke, Inhibition and Activation

Several models exist for inhibition and activation of enzymes. Most well known: competitive
inhibition, uncompetitive inhibition, mixed (noncompetitive) inhibition.
A useful way to look at rate equations is a Lineweaver-Burke plot. In a double-reciprokal

plot, the Michaelis-Menten equations corresponds to a straight line of the form y=a-x+Db,

1 Ky 1 1

1_Kwl1l 1 (7)

v Vm[S] Vu
However, nonlinear regression (fitting) using numerical software is superior to estimate enzyme-
kinetic parameters.

Reversible rate equations

The reversible form of the Michaelis-Menten equation is

V.8l _ v (Bl
V__f_ Ks _ ""Kp (8)
S P .
1+l_l.+i_}l.

The equation can be rewritten as

— e — _n

V=Vf—1 vy <1 l/f) (9)
with

v _ Vp Ks [P]

=2 =25 ] 10
At equilibrium (v = 0), we obtain .

[P]O Vi Kp

i K K,,=-L"+ 11

50 =t Vs Ks (11)
The latter is known as Haldane relationship. The rate equation can then be written as

S .
Ve ,@_@JJ (12)
S P :
1+ £+ [S] Keq

The rate equations is separated into two parts: a kinetic contribution that depends on Michaelis-
Menten constants, and a thermodynamic contribution that only depends on concentrations and
(chemical) equilibrium values. Note that the Kq are also not independent.

Other rate equations

Other rate equations can be derived, dependent on the mechanism of the enzyme (random
binding, sequential binding, ping-pong, etc ...). It is sometimes possible to approximate rate
equations with a generic function. For example for a reaction

S14+ S+ =P +Py+... |- (13)

we can write

(14)

VMH%L L\
P et [ ] =
D Keq



where I' denotes the mass-action ratio
Ng 5
r= ——H:;jl[s’] : (15)
[1;2:(7;]

and D denotes a polynomial of the form

D= H<1+[S])+H(1+[P]> . (16)

Note the structural similarity with the form above: a kinetic term multiplied with a thermody-
namic term. Note also that generic rate equation are approzimations. For example they do not
account for competition between specific pairs of substrates and products.

e Further Reading: Herbert M. Sauro (2014) Enzyme Kinetic for Systems Biology.. Am-
brosius Publishing (ISBN 978-0-9824773-3-5).

e Further Reading: Liebermeister W, Uhlendorf J, Klipp E. (2010) Modular rate laws for
enzymatic reactions: thermodynamics, elasticities and implementation. Bioinformatics.
26(12):1528-34. doi: 10.1093/bioinformatics/btql41.

The ’recipe’ for kinetic metabolic models

1. Assemble list of reactions. Best from appropriate database to ensure consistent stoichiom-
etry. Define system boundaries (external metabolites).

2. Brief stoichiometric analysis: check for conserved moieties, check that flux sblutions are
possible (the right nullspace needs to allow for at least one nonzero flux vector). Check
overall consistency of the stoichiometry.

3. Assign rate equations (generic equations if needed).

4. Assign kinetic parameters. Parameters can also be defined within a range. Note that some
parameters are interdependent (for example equilibrium constants). Different parameter
sets can represent different states (e.g. a wildtype versus a mutant). A typical rate
equation has one K value for each substrate and product, one maximal velocity Vimax,
and an equlibrium constant Keq.

5. Explore model using techniques from Nonlinear Dynamics and Metabolic Control Analy-
sis: steady-state, stability, sensitivities, control coefficients.

Some further resources

e https://www.genome.jp/kegg/

https://www.brenda-enzymes.org/

e equilibrator.weizmann.ac.il/

https://reactome.org/
https://kbase.us/

http://modelseed.org/

https://www.ebi.ac.uk /biomodels-main/



The (logarithmic) sehsitivity

One of the most important concepts is the sensitivity of a function to a parameters. The
sensitivity of a value y = f(p) with respect to a parameter p is defined as the derivative

_Afp) ()
I vk (17)

However, the value depends on the absolute values of parameters. It is more useful to look at
relative sensitivities

d(%")‘)) _ P _df®) _ dinf(p) (18)
d(;%) f@°) dp dlnp ~

Example:
Vv -z dlnv(z) 1
= e —_— T 1
Y@= Ky ta dinz 1+ & (19)
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The logarithmic sensitivities have an intuitive interpretation as the kinetic order. For a Michaelis-
Menten function, the logarithmic sensitivity with respect to the substrates ranges from 1 (linear
regime, substrate concentration small compared to Kjs) to 0 (saturation, substrate concentra-
tion large compared to Kyy).

Exercise

What are the logarithmic sensitivities of the following functions with respect to the variable z?

viz)=k-x (20)

viz) =k-z" (21)

v(x) = % : ’ (22)

@) = (23)
Kt

Metabolic Control Analysis

Metabolic Control Analysis (MCA) considers how a perturbation propgates through a metabolic
network. Typically: how a change in enzyme concentration (or other parameter) affects the
steady with respect to metabolite concentrations and flux values. There is an extensive literature
on MCA, see for example:

https://en.wikipedia. org/wiki/Metabolic_control analysis

MCA is also conceptually similar to classic sensitivity or control theory (from engineering).
There are (slightly) different formulations. Similar to other sensitivities, the formulation can
be in absolute terms or scaled (i.e. logarithmic sensitivities). In the terminology of MCA, the
partial derivatives of a reaction rate with respect to its substrates are called elasticities €,

v _ Ov(z)
S

€

(24)



the scaled elasticities are

o Olnv(z)
7 Jlnx

A set of reactions and a set of metabolites, results in an elasticity matrix e. Note that the
Jacobian matrix is J = IV - € at a steady state (assuming no mass-conservation).

The (unscaled) concentration control coefficient specify how the concentrations change after
the perturbation of a parameter (typically an enzyme concentration) that affects (one or more
fluxes). In terms of derivatives,

x_dr oy _do
Cdp'op  dv

(25)

(26)

However, in general no explicit function for the concentrations of the form z = f(p) are known.
Therefore, we consider

Jvdx Ov

N-v(z,p)=0 = N[EEE;;J“EE]‘O ; (27)
and obtain

dz o1t o |

= _|N.Z N .—

dp [ 3xJ N op (28)

=X
using the definition
vt
X _ _ et .N=-J1.
ct = [N 82:] N J N . (29)

The definition gets slightly more complicted if the Jacobian matrix is not invertible (for example
due to conserved moieties). In this case, a link matrix L has to be introduced, see further
reading. For a set of concentrations and a set of reactions (or enzymes), the concentration
control coefficients are a matrix. Multiplication of the concentration control coefficient with
(any) vector of the nullspace of N results in the summation theorem,

P

C*¥ K=0 . (30)

Likewise, multiplication of the concentration control coefficient with the elasticity matrix results
in the connectivity theorem,

CX.e=-1. (31)

Similar to C¥, the flux control coefficient denotes the changes in flux upon pertubations,

dv. Ov Ovdzx ov x| ov

—_— - =14+ =. —_— 2

dp 8p+8xdp [+6xc]8p ’ (32)
and

81/ X v
V=14 —- )

C <+ p C (33)
The corresponding summation theorem (for unscaled coefficient) is

C" K=K . - (34)

7 =~ v
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Scaled Control Coefficients

Similar to partial derivatives, it is often useful to consider scaled control coefficients. These
provide a measure of the relative changes of concentrations and fluxes upon relative changes in
parameters (that is, a scaled control coefficient of (¥ implies that if the corresponding enzyme
is changed by 1% the respective flux changes by 1%). We define scaled elasticities,

é=D4 e Do , (35)
scaled concentration control coefficients C'X :

CX=Dpt.¢%.Da | (36)
and scaled flux control coefficients (¥ ,

C"=D}-C" Do , « (“=14+¢.0% | (37)

where D,o and D,o denote diagonal matrices with elements z° and ° on the diagonal, respec-
tively.

Further reading

e Heinrich R. and Schuster S. (1996) The Regulation of Cellular Systems, Chapman and
Hall.

* R. Steuer and B. H. Junker (2009) Computational Models of Metabolism: Stability and
Regulation in Metabolic Networks. Advances in Chemical Physics, Volume 142. Rice,
Stuart A. (editor), ISBN-10: 0-470-46499-2 ISBN-13: 978-0-470-46499-1 - John Wiley &
Sons

Protein phosphorylation and cellular signaling

One of the most important signaling motives are protein phosphorylation cycles, i.e., a post-
translational modification of a protein in which an amino acid residue is phosphorylated by
a protein kinase, and dephosphorylated by a protein phosphatase. Phosphorylation changes
the structural conformation of the protein, the phosphorylated protein has a modified function
(e.g. phosphorylation may activate or deactivate a protein). See F igure2. Important examples
are two-component signaling systems and mitogen-activated protein kinase (MAPK or MAP
kinase) systems (as well as many others, e.g., phosphorylation of enzymes).
Simple models follow mass-action kinetics. For a simple phosphorylation cycle, we obtain

%ﬁ”] =k1-S-[R]—ks-[R,)] (38)

=1 =vy
where the kinase activity represents the signal S, and the activity of the phosphatase is assumed
to be constant (and included in the rate constant ko). The systems exhibits mass conservation

[Rp] +[R] = RT, where Ry denotes the amount of total protein. The steady state can be solved
straightforwardly (— Exercise),

ki-S-RT
0_ M

Note that the dependence on the kinase activity (signal) is hyperbolic, whereas the dependence
on the total protein is linear.

(39)
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Figure 2: Protein phosphorylation cycle. (A) A protein phosphorylation cycle. A kinase phos-
phorylates an (amino acid residue of a) protein. The phosphorylated protein has a modified
function (active or inactive). Dephosphorylation can be catalyzed by a phosphatase or be
spontanous. (B) A two-component system. Two-component signaling system typically consist
of a (membrane-bound) histidine kinase protein that autophosphorylates in the presence of a
signal and phosphorylates a partner response regulator protein. An important example is the
EnvZ/OmpR two-component system.
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Robustness of two-component systems

The cellular environment fluctuates and protein expression is stochastic. Cells evolved mech-
anisms to cope with such fluctuations. A well known example is the robustness of (some)
two-component systems with respect to fluctuations in the total amounts of proteins.

To model a two-component system (using mass-action kinetics), we consider the dynamics
of the histidine kinase [H] and the response regulator [R]. Both exist in the phosphorylated an
unphosphorylated form. The ODEs are

%]—21“1-5-[11]—162-[3]-[1{1,] and %sz[R]‘[Hp]—k:g-[Rﬁ] > (40)

with [Hy] + [H] = HT and [R,] + [R] = R”. The solution is lengthy (a quadratic equation).

In many two-component systems, the (unphosphorylated) sensor kinase also acts as a phos-
phatase for the response regulator — redundancy the phosphorylated form ’activates’ the re-
sponse regulator, the unphosphorylated form ’deactivates’ the response regulator. A possible
reason was to prevent residual (auto- or unspecific) activation of the response regulator. The
equations, - however, show that the effect is more profound. At steady-state, we know that
vy = v3. Hence, if the dephosphorylation reaction is v3 = k3 -[R,] - [H], the steady state solution
for the active response regulator is

[Ry]° = ’Z—; S for [R,)°<RT . (41)

The resulting equation is independent of the expression of the proteins (— perfect adaptation,
integral feedback).

Further reading

e Batchelor E, Goulian M. (2003) Robustness and the cycle of phosphorylation and de-
phosphorylation in a two-component regulatory system. Proc Natl Acad Sci U S A.
100(2):691-6. DOI: 10.1073/pnas.0234782100 :
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e Steuer R, Waldherr S, Sourjik V, Kollmann M.(2011) Robust signal procéssiﬁ'g in living
cells. PLoS Comput Biol. 7(11):e1002218. doi: 10.1371/journal.pcbi.1002218.

Ultrasensitivity

An ultrasensitive response describes a response that is more sensitive to changes in input than
the hyperbolic Michaelis-Menten response. Ultrasensitivity was first (heuristically) described
by A. Hill in 1910 to describe the sigmoidal O2 binding curve of haemoglobin. The Hill equation
is

kp - [L]®
O=_" 42
K% +[L]" (42)
where O denotes some output (such as the fractional binding), [L] the concentration of a ligand,
kp a proportionality constant, K 4 the half-stauration constant, and n the Hill coefficient.

e Exercise: What is the logarithmic sensitivity of the output with respect to the ligang
concentration?

A mechanistic model for ultrasensitivity was proposed by Goldbeter and Koshland, the
Goldbeter-Koshland switch. The switch arises if the reactions in a protein phosphorylation
cycle are close to saturation. Similar to Equation (43),

d[Rp] _ k1-S-[R] ko [Ry) (43)
dt Kmi+[R] Kma +[Ry]

The solution provides the *Goldbeter-Koshland’ function, a sigmoidal response curve.

¢ Exercise: To calculate the steady-state solution [Rp]® = £(9) is strafightforward but
lengthy. It is much simpler to calculate the inverse function S = 9([Rp]°) and plot this
function.

There are now several other known mechanisms that result in ultrasensitivity. See articles
by Ferrell and Ha. o

Further reading

e Goldbeter A, Koshland DE (1981). An amplified sensitivity arising from covalent modi-
fication in biological systems. Proc. Natl. Acad. Sci. U.S.A. 78 (11): 68404.
do0i:10.1073/pnas.78.11.6840

® https://en.wikipedia.org/wiki/Goldbeter-Koshland_kinetics

e Ferrell JE Jr, Ha SH. (2014) Ultrasensitivity part I: Michaelian responses and zero-order
ultrasensitivity. Trends Biochem Sci. 39(10):496-503. doi: 10.1016/j.tibs.2014.08.003.

e Ferrell JE Jr, Ha SH. (2014) Ultrasensitivity part II: multisite phosphorylation, stoi-
chiometric inhibitors, and positive feedback. Trends Biochem Sci. 39(11):556-69. doi:
10.1016/j.tibs.2014.09.003.

e Ferrell JE Jr, Ha SH. (2014) Ultrasensitivity part III: cascades, bistable switches, and
oscillators. Trends Biochem Sci. 39(12):612-8. doi: 10.1016/j.tibs.2014.10.002.
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The dynamics of cellular signaling

Protein networks form complex dynamic systems. Models are constructed using general rules
for chemical kinetics (mass-action, binding, unbinding, etc ...). Protein modifications play an
important role.

¢ Recommended reading: Tyson JJ, Chen KC, Novak B. (2003) Sniffers, buzzers, toggles
and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell
Biol. 15(2):221-31.

It is recommended to consider some of the examples described by Tyson et al. (2003). Note,
however, that these are just examples of network motifs that exhibit a certain dynamics. Other
examples are possible.

In particular, Tyson et al (2003) consider the following systems:

¢ (1b) Phosphorylation cycle with mass-action kinetics: same as the example above.
The response is a hyperbolic Michaelis-Menten function.

e (1c) Phosphorylation cycle with Michaelis-Menten kinetics: ultrasensitive re-
sponse. Goldbeter-Koshland function.

e (1d) Perfect adaptation: similar to the case of concentration robustness considered
above. A protein is activated and deactivated by a signal. Deactivation, however, takes
place after a time lag (via an intermediate variable). Therefore the steady-state concen-
tration does not change, but the system exhibits a transient activation — detection of
changes in the input signal (also circuits that implement fold change detection rely on
perfect adaptation).

e (le) Mutual activiation: two proteins mutually activate each other. The result is a
bistable system in which a transient input activates the output, and the activation persists
even when the input is removed. 5

e (1f) Mutual inhibition: two proteins mutually inhibit each other. The result is a tug-
of-war situation. Depending on initial conditions (and signal strength) one protein "wins’
— bistable switch.

¢ (1g) Negative feedback and homeostasis: negative feedhack is one of the most im-
portant control techniques. The output is fed back into the system such that deviations
from the desired state are reduced. Similar to, e.g., thermostats.

Negative feedback is prone to instability. With increasing feedback strength, the following
dynamics occur: first the response time is reduced, up to the point at which critical damping
occurs. At this point, the feedback is as strong as it can get, without overshooting. For
stronger feedback, damped oscillations occur. For even stronger feedback, the system (can) go
into sustained oscillations (— Hopf-bifurcation). Negative feedbacks are prone to instability
and are underlie cellular oscillations. An early model of cellular oscillations is the Goodwin
oscillator.

Modelling gene expression as a stochastic system

Proteins and mRNA molecules are often present in low copy numbers. In this case, a description
by continuous deterministic differential equations is not appropriate and the system must be de-
scribed as a stochastic birth-and-death process that considers synthesis and decay of individual
molecules.

11 Y
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A simple example is the transcription of an mRNA M and its translation into a protein A.

otein
transcription kM mRNA translation PI'
AN — @
’
du dp
decay decay

The differential equations for the continuous concentrations [R] of mRNA and of the protein [A]
are A

d[R] dA4]

dt = Vtranscription — Vdecay dt = Vtranslation — Ydecay - (44)

For low copy numbers, we describe the system by a state x(t) = (R, A) at time ¢ where R and
M are positive integers and denote the respective number of molecules.

The time evolution is given by transitions between different states x — x’. In our case,
there are 4 possibilities (we always assume that only one event occurs, the probability that two
events occur exactly at the same time is vanishingly low).

(R,A) - (R+1,A) transcription of one mRNA

(R,A) - (R—1,A) decay of one mRNA

(R,A) —» (R,A+1) translation of one protein

(R,A) —» (R,A—1) decay of one protein ¢

These transitions are stochastic, i.e., they occur with a certain probability that depends on the
current state of the system. Instead of a deterministic trajectory, the time evolution of the
system is therefor given as the probability distribution p(x,t) to be in state x-at time .

The Master Equation

The time evolution of the probability distribution p(x,t) is described by the master equation,

s

dpEi};’t) - Z [wx' = x)p(x',t) —w(x = x) p(x,t)] . -

’

X

Here, w(x’ — x) denotes the probability for a transition x’" — x. The master equation can also
be written in matrix form.

Gillespie Algorithm

Unfortunately, the master equation is difficult to solve, either numerically or analytically. In
most cases, therefore, instead of solving the time of evolution of the probability distribution,
individual trajectories are simulated. These trajectories are realizations of the stochastic system,
i.e., they are possible solutions that are consistent with the transition probabilities of the master
equation. statistically correct trajectory “(possible solution) of a stochastic equation. A well
known algorithm to simulate a stochastic trajectory was proposed by Dan Gillespie (— Gillespie
algorithm):

1: The system is in x at time ¢.

oy
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: Estimate the transition probabilities w; for all feasible transitions from this state to an-

other state x — x'.

: Estimate the time intervals At after which a (any) transition happens (the waiting time

is exponentially distributed),

1
At = ——1 ith = -
Slogle)  wih  w=3w

Here, &; is a (uniform) random number in (0, 1].

Estimate which transition happens. The probability for an individual transition is pro-
portional to w;, therefore the following equation holds for the transition w, that actually
happens,

a—1 «
Zwi < Soup < Zwi 5
i=1 i=1

with & € [0, 1] being another (uniform) random number in (0, 1].

: Update the state x and time t (¢t — ¢ + At) and continue with step 1 until the final time

is reached.

Topics not talked about

Specific models, such as: circadian clocks, chemotaxis, the cell cycle

Spatial models, reaction-diffusion systems, pattern formation and partial differential equa-
tions.

Neural dynamics, models of ion channels, excitability, action potentials, oscillations and
bursting, Hodgkin-Huxley model, integrate-and-fire models.

Models of evolution, population dynamics, hypercycles (— Manfred Eigen, 1971)

s

Models of ecosystems, ecological modelling



